Image classification based on complex wavelet structural similarity

نویسندگان

  • Abdul Rehman
  • Yang Gao
  • Jiheng Wang
  • Zhou Wang
چکیده

Complex wavelet structural similarity (CW-SSIM) index has been recognized as a novel image similarity measure of broad potential applications due to its robustness to small geometric distortions such as translation, scaling and rotation of images. Nevertheless, how to make the best use of it in image classification problems has not been deeply investigated. In this paper, we introduce a series of novel image classification algorithms based on CW-SSIM and use handwritten digit recognition, and face recognition as examples for demonstration. Among the proposed approaches, the best compromise between accuracy and complexity is obtained by the CW-SSIM support vector machine based algorithms, which combines an unsupervised clustering method to divide the training images into clusters with representative images and a supervised learning method based on support vector machines to maximize the classification accuracy. Our experiments show that such a conceptually simple image classification method, which does not involve any registration, intensity normalization or sophisticated feature extraction processes, and does not rely on any modeling of the image patterns or distortion processes, achieves competitive performance with reduced computational cost. & 2012 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex-Wavelet Structural Similarity Based Image Classification

Complex wavelet structural similarity (CW-SSIM) index has been recognized as a novel image similarity measure of broad potential applications due to its robustness to small geometric distortions such as translation, scaling and rotation of images. Nevertheless, how to make the best use of it in image classification problems has not been deeply investigated. In this study, we introduce a series ...

متن کامل

New Adaptive Image Quality Assessment Based on Distortion Classification

This paper proposes a new adaptive image quality assessment (AIQA) method, which is based on distortion classifying. AIQA contains two parts, distortion classification and image quality assessment. Firstly, we analysis characteristics of the original and distorted images, including the distribution of wavelet coefficient, the ratio of edge energy and inner energy of the differential image block...

متن کامل

A Robust Object Tracking Method Using Structural Similarity in Daubechies Complex Wavelet Domain

Many of the existing algorithms for object tracking that are based on spatial domain features, fail in the presence of illumination variation or change in appearance or pose or in the presence of noise. To overcome these problems, in this paper, we have proposed a new method of object tracking using structural similarity index in complex wavelet transform domain, which is approximately shift-in...

متن کامل

CW-SSIM Kernel based Random Forest for Image Classification

Complex wavelet structural similarity (CW-SSIM) index has been proposed as a powerful image similarity metric that is robust to translation, scaling and rotation of images, but how to employ it in image classification applications has not been deeply investigated. In this paper, we incorporate CW-SSIM as a kernel function into a random forest learning algorithm. This leads to a novel image clas...

متن کامل

Automated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images

ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that                                                      facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Sig. Proc.: Image Comm.

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2013